Scale-separation from O-planes

Georgios Tringas (Lehigh University)

Tue Jun 10, 09:00-10:00 (6 months ago)

Abstract: Orientifold planes play a crucial role in flux compactifications of string theory, and we demonstrate their deep connection to achieving scale-separated solutions. Specifically, we show that when an orientifold plane contributes at leading order to the non-zero value of the scalar potential, then either the weak coupling limit or the large volume limit implies scale separation, meaning that the Kaluza-Klein tower mass decouples from the inverse length scale of the lower-dimensional theory. Notably, in the supergravity limit, such solutions are inherently scale-separated. This result is independent of the spacetime dimension and the dimensionality of the Op-plane as long as p < 7. Similarly, we show that parametric scale separation is not possible for isotropic compactifications with a leading curvature term that generically arise in the AdS/CFT context. We classify all possible flux compactification setups in both type IIA and type IIB string theory for Op-planes with 2 ≤ p ≤ 6 and present their universal features. While the parametrically controlled scale-separated solutions are all AdS, we also find setups that allow for dS vacua. We prove that flux quantization prevents these dS vacua from arising in a regime of parametric control.

general relativity and quantum cosmologyHEP - experimentHEP - latticeHEP - phenomenologyHEP - theory

Audience: researchers in the topic

( slides )


NKUA HEP Seminars

Series comments: Please email tomeasb(at)gmail(dot)com to obtain the meeting link and password. Unless explicitly requested otherwise, your email address will be included in our seminar mailing list.

Organizer: Ioannis Papadimitriou*
*contact for this listing

Export talk to